匹配和多条件查询。这是因为向量表示能够在多维空间中表达各种语义关系,从而对查询的各个方

    面进行解析和响应。例如,对“可再生能源的成本效益”进行查询,使用该语句的向量与向量知识

    库中的文献进行匹配,计算相似度,得到相似度最高的两篇文献。继续检索文献的内容,进而对查

    询内容进行回答。数据示例如表4.1所示。

    力机器学习和人工智能应用

    向量知识库为机器学习和人工智能提供了高质量的输入数据。在许多AI应用中,如推荐系

    统、自动摘要生成和自然语言理解,高质量的向量化输入是模型性能的关键。通过预先构建的向量

    知识库,可以显著减少模型训练时间和提高模型的预测精度。

    例如,在文档推荐系统中,系统可以通过计算用户历史浏览文档的向量和库中文档向量的相似

    度,快速准确地推荐相关内容。

    5.数据安全与管理

    向量化数据提供了一种更加抽象的数据表达形式,相对于原始文本数据,向量数据在存储和传

    输过程中能够更好地保护信息的安全性。此外,管理结构化的向量数据相比于非结构化的文本数据

    更为简便,可以利用现有的数据库技术进行高效管理。

    增强数据互操作性

    向量化的数据易于与各种数据处理工具和分析平台集成,增强了不同系统间的数据互操作性。